Pitstop 2 Is a Potent Inhibitor of Clathrin-Independent Endocytosis
نویسندگان
چکیده
Clathrin independent endocytosis (CIE) is a form of endocytosis present in all cells that mediates the entry of nutrients, macromolecules and membrane proteins into cells. When compared to clathrin-dependent endocytosis (CDE), however, much less is known about the machinery involved in forming CIE endosomes. One way to distinguish CIE from CDE has been to deplete cells of coat proteins involved in CDE such as clathrin or the dynamin GTPase, leading to a block of CDE but not CIE. A drawback of such genetic manipulations is that depletion of proteins important for mediating CDE over a period of days can have complex indirect effects on cellular function. The identification of chemical compounds that specifically and rapidly block CDE or CIE would facilitate the determination of whether a process involved CDE or CIE. To date, all of those compounds have targeted CDE. Dynasore and the dynoles specifically target and block dynamin activity thus inhibiting CDE but not most forms of CIE. Recently, a new compound called pitstop 2 was identified as an inhibitor of the interaction of amphiphysin with the amino terminal domain of clathrin, and shown to inhibit CDE in cells. Here we show that pitstop 2 is also a potent inhibitor of CIE. The effects of pitstop 2 are not restricted to inhibition of clathrin since knockdown of clathrin fails to rescue the inhibition of endocytosis of CIE proteins by the drug. Thus pitstop 2 has additional cellular targets besides the amino terminal domain of clathrin and thus cannot be used to distinguish CIE from CDE.
منابع مشابه
Clathrin inhibitor Pitstop-2 disrupts the nuclear pore complex permeability barrier
Existence of a selective nucleocytoplasmic permeability barrier is attributed to Phenylalanine-Glycine rich proteins (FG-nups) within the central channel of the nuclear pore complex (NPC). Limited understanding of the FG-nup structural arrangement hinders development of strategies directed at disrupting the NPC permeability barrier. In this report we explore an alternative approach to enhancing...
متن کاملNon-specificity of Pitstop 2 in clathrin-mediated endocytosis
Small molecule inhibitors of clathrin-mediated endocytosis are highly desired for the dissection of membrane trafficking pathways in the lab and for potential use as anti-infectives in the clinic. One inhibition strategy is to prevent clathrin from contacting adaptor proteins so that clathrin-mediated endocytosis cannot occur. "Pitstop" compounds have been developed that block only one of the f...
متن کاملNon - specificity of Pitstop 2 in clathrin - mediated endocytosis Anna
CC-BY 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was. Abstract Small molecule inhibitors of clathrin-mediated endocytosis are highly desired for the dissection of membrane trafficking pathways in the lab and for potential use as anti-infectives in the clinic. One inhibition strategy is to prevent ...
متن کاملPituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.
After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surfa...
متن کاملClathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells
Transport of insulin across the microvasculature is necessary to reach its target organs (e.g., adipose and muscle tissues) and is rate limiting in insulin action. Morphological evidence suggests that insulin enters endothelial cells of the microvasculature, and studies with large vessel-derived endothelial cells show insulin uptake; however, little is known about the actual transcytosis of ins...
متن کامل